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Executive Summary

This paper outlines both the theoretical foundations and practical application of Monte Carlo methods for
travel demand forecasting, demonstrating how they can be integrated into business case processes to
strengthen infrastructure planning and investment decisions. Although Monte Carlo simulation is commonly
used to assess cost uncertainty, its use in transport demand forecasting remains limited. Applied in this
context, it offers a powerful way to understand and communicate the range of possible outcomes. By
introducing probabilistic insights into demand variability, it complements traditional forecasting and risk
assessment methods. This directly addresses government concerns about cost overruns and the need for
more robust evidence in infrastructure planning. When embedded within investment appraisal frameworks, it
provides more systematic insights into the sensitivity of forecasts from travel demand models to changes in
inputs - ultimately supporting more transparent, adaptive, and resilient decision-making.

Key Findings:

1. Practical Implications for Policymakers and investors: Monte Carlo simulations provide a
probabilistic framework to manage risk and evaluate the robustness of business case forecasts.

2. Making Monte Carlo a Practical Tool for Major Projects: For Monte Carlo simulation to be effective
in major infrastructure and policy decisions, it must be quick to apply, easy to use, and directly
relevant to investment planning. It should help decision-makers understand risks, compare different
scenarios, and plan for future uncertainties. This makes Monte Carlo not only faster and more
practical to apply but also a more robust tool for real-world infrastructure planning.

3. Enhanced Predictive Accuracy with the Best-Suited Model: Selecting a regression model that
best fits the available data is crucial and it's important to test alternative transformations before
finalising the simulation approach. In this case, a log-transformed regression model outperformed
other models, achieving more precise demand forecasts.

4. Securing Stakeholder Buy-In: Recognising that the effectiveness of Monte Carlo analysis depends
on stakeholder engagement grounded in sound evidence, a graphical interface was developed to
support the collaborative definition of plausible futures. This interactive platform ensures transparency
in input selection, while real-time visual feedback enables rapid refinement of assumptions based on
simulation results - fostering trust, clarity, and shared understanding throughout the process.

5. Testing Future Scenarios: Ensuring Adaptability Under Uncertainty: Monte Carlo simulations are
powerful tools for exploring dynamic, plausible futures. A scenario was developed to demonstrate how
the model responds to both higher- and lower-than-expected demand drivers over time. The results
highlight the risks of overinvestment if demand falls short and the potential for capacity constraints if
demand exceeds expectations. This underscores the option value of flexible planning, ensuring that
infrastructure investments remain adaptable to a wide range of future demand conditions.

6. Transferability of Approach: While developed using results from a rapid transit case study, this
Monte Carlo simulation framework is highly versatile. It can be applied to other high-priority transport
investments, such as Roads of National Significance, busways and congestion pricing, offering robust
decision support for diverse infrastructure projects across New Zealand.

Monte Carlo approaches should be a required component of all major transport investment and policy
business cases, providing a systematic framework for assessing uncertainty and improving the credibility of
demand forecasts - ensuring uncertainty is a core consideration, not an afterthought.
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1 Introduction

Transport policy and planning largely depend on travel demand models to forecast future transport patterns
and guide investment decisions. Yet, like all predictive models, their forecasts are inherently uncertain - raising
concerns about overspending, unreliable forecasts, and inadequate evidence in decision-making.

At its core, this paper builds on Willumsen’s (2014) assertion that “uncertainty is unavoidable in any forecast
of future conditions”. Recognising that risk is quantified uncertainty, this paper demonstrates how Monte Carlo
techniques can systematically capture uncertainty and present it in a way that strengthens decision-making.

This paper first examines transport policy and travel demand modelling before introducing the Monte Carlo
approach. It then applies this method to a major Auckland infrastructure project as a case study and
concludes with an analysis of its implications for modelling and policy.

Monte Carlo techniques offer a powerful tool for assessing uncertainty in demand forecasts. By simulating a
range of possible outcomes under varying assumptions, they provide a probabilistic perspective, enhancing
risk management and decision-making. Whether you are a policymaker shaping infrastructure priorities, an
investor evaluating returns, a banker assessing repayment risks, a consortium bidding on a major project, or a
government agency delivering large-scale infrastructure, this approach offers a data-driven framework to
improve how transport projects are planned, funded, and implemented.

2 Background

2.1 Improving Infrastructure Decisions Through Better Risk Assessment

In New Zealand, as in many other countries, transformative projects, from city-shaping infrastructure and
region-connecting investments to pricing strategies that manage demand and drive economic growth, are
assessed through structured business cases. These cases rely heavily on transport model forecasts to guide
investment and policy decisions, underpinning cost-benefit analysis (CBA), funding prioritisation, and risk
assessments that shape major infrastructure projects.

However, traditional forecasting approaches tend to present deterministic outputs - single-point estimates that
do not fully capture uncertainty. As Willumsen and Ortuzar (2015) note “the future is not deterministic and no
amount of technical skills and models can change that”. Failing to explore uncertainty in travel demand
forecasts can lead to over- or under-estimated project and policy benefits, influencing political and financial
commitments to transport investments and policies. Uncertainty is especially important in major projects which
have long planning horizons and whose infrastructure lasts for many decades, where unforeseen changes in
demographics, land use, technology, and travel behaviour can drastically alter outcomes.

Recent research (Megaprojects and Risk, 2024) (Forecast Bias - How to Reduce Forecast Bias and Increase
Accuracy, 2025) and real-world case studies illustrate the risks of neglecting uncertainty. Both overly optimistic
and overly pessimistic demand forecasts have led to significant challenges in major transport projects
worldwide - excessive projections often result in cost overruns and underutilised infrastructure, while overly
cautious estimates can delay or prevent much-needed investments, only to later require expensive and
disruptive capacity expansions to meet unforeseen demand. Some examples are:

High Speed Rail 2 (HS2) — United Kingdom

HS2's estimated costs have surged from £37.5 billion in 2009 to nearly £100 billion, leading to the cancellation
of both the eastern and western legs under recent governments. Investigations have highlighted
mismanagement, inefficient spending, and inadequate governance as contributing factors.

Sir Jon Thompson's resignation as HS2 chair follows reports of a £9 billion increase in project costs, raising
the estimated total to between £54 billion and £66 billion in 2019 prices, potentially £80 billion today (Topham,
2024).

An evidence submission to the UK Parliament's Economic Affairs Committee raised concerns that the
business and economic cases for HS2 have significantly overstated forecast passenger demand, with
estimates potentially exceeding actual demand by 21.4% to over 300% (UK Parliament Economic Affairs
Committee, 2025).




Brisbane's Clem Jones Tunnel (CLEM7)

The tunnel experienced actual traffic volumes as low as one-third of forecasted figures, leading to significant
revenue shortfalls. Due to lower-than-expected usage, RiverCity Motorways, the tunnel's operator, went into
receivership in February 2011, owing $1.3 billion (TransApex, 2024).

Docklands Light Railway (DLR) — London, UK

Upon its inauguration in 1987, the Docklands Light Railway (DLR) in London experienced passenger numbers
that quickly surpassed initial forecasts, leading to overcrowding and necessitating rapid capacity
enhancements. The original system was designed with a capacity of approximately 9,000 passengers per
hour in each direction. However, due to the rapid development of the Docklands area into a significant
financial and commercial hub, ridership increased much faster than anticipated. This surge in demand
prompted the extension of platforms to accommodate longer trains and the expansion of the network to better
serve the growing number of passengers (Select Committee on Transport: Written Evidence, 2005).

These unforeseen high passenger numbers led to the acceleration of capacity improvement projects, resulting
in increased costs and logistical challenges to meet the ridership needs. The initial infrastructure had to be
upgraded sooner than planned, highlighting the importance of accurate demand forecasting in transport
infrastructure projects (Transport for London, 2023).

M25 Motorway — London, UK

The M25, encircling London, was designed for a maximum capacity of 88,000 vehicles per day but, by 1993,
was accommodating approximately 200,000 vehicles daily. The unanticipated high traffic volumes led to
multiple widening projects, expanding sections to four lanes and, in some areas, up to six lanes per direction
in attempts to alleviate congestion (M25 motorway, 2024).

A growing body of research highlights the importance of explicitly accounting for uncertainty in infrastructure
decision-making (Hall, 2024; Moroni & Chiffi, 2022). One of the most compelling benefits of this is the concept
of option value - the strategic advantage of designing infrastructure with the flexibility to scale up or down in
response to future demand (Option value cost-benefit analysis, 2025; Real options valuation, 2019). Monte
Carlo simulation offers a practical means of operationalising option value in transport planning and demand
forecasting. By quantifying uncertainty, simulating a wide range of plausible futures, and pinpointing where
flexibility in timing, staging, or capacity is most valuable, it helps planners manage the risks of overbuilding or
under-provisioning and embed adaptive decision-making directly into project design.

2.2 Why Monte Carlo Matters for Policy-makers and Public Infrastructure Agencies

For the purposes of this paper, policy-makers are considered in two broad groups: sponsors and policy
advisors.

e Sponsors are elected officials - such as government ministers, mayors, or chairs of council
committees - who are ultimately responsible for major investment decisions.

e Policy advisors are public servants who support these decision-makers by providing analysis and
recommendations on major transport projects and policy levers, including congestion pricing, fare
structures, and tolling strategies.

Alongside them, public infrastructure agencies - such as NZTA, TINSW, and Auckland Transport - play a
central role in delivering, operating, and maintaining transport networks. While these agencies are not
motivated by direct financial return in the way private investors' are, they must still justify public investment,
manage demand risk, and ensure the efficiency and sustainability of transport systems. Their role is to
implement policies effectively and deliver infrastructure that aligns with strategic objectives, all while remaining
accountable to both policy-makers and the public.

" While this paper focuses on policy-makers and public infrastructure agencies, Monte Carlo techniques are equally valuable to private
investors in transport projects. For investors, understanding the range of possible demand outcomes is critical to assessing risk, informing
commercial decisions, and structuring contracts and financing.
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In the context of Monte Carlo analysis for travel demand, both groups are particularly focused on two key
questions:

¢ How much confidence can | have in the business case forecasts?
¢ How do these forecasts compare to a range of plausible futures?

They must evaluate the impact of controllable policy levers (e.g., fares, tolls, or parking prices) alongside less
controllable factors (e.g., employment growth), all under real-world uncertainty. Insights from Monte Carlo
simulations help guide funding decisions, scenario planning, and strategies to build investor and community
confidence.

Both policy-makers and agencies must balance economic, social, and environmental considerations. Credible,
evidence-based demand forecasts support smarter resource allocation, risk management, and transparency.
For sponsors, political credibility matters as much as project performance - missed forecasts can damage
reputations and erode public trust.

Key Perspectives

When designing Monte Carlo scenarios and interpreting results, policy-makers and infrastructure agencies are
likely to consider the following:

. Confidence in Forecasts
Evaluate demand across the 10th, 50th, and 90th percentiles:

o Forecasts close to the median (50th percentile) suggest alignment with likely outcomes.

o Forecasts within the 10" - 90th percentile indicate balanced assumptions and manageable
risk.

. Impact of Policy Variables
Understanding the role of key inputs - both individually and in combination - is essential:

o Controllable variables (e.g., tolls, congestion pricing, fares) can be shaped directly.

o Limited-influence factors (e.g., employment, population growth) are influenced by broader
national or global trends. For example, while immigration policy can affect population growth,
it may take years to shift travel demand.

o Warning Signals

o Business case forecasts consistently below the 50th percentile may indicate underdeveloped
downside analysis.

o Right-skewed distributions (positive skewness) suggest reliance on optimistic assumptions.

o A high coefficient of variation or large changes in standard deviation across years may reflect
unstable or uncertain forecasting.

. Red Flags

o Forecasts above the 90th percentile signal a high risk of optimism bias, increasing the chance
that actual demand will fall short.

o Forecasts below the 10th percentile raise capacity concerns, suggesting pessimism bias and
a risk of early, costly upgrades - undermining public trust in planning and investment
decisions.

For agencies like NZTA and Auckland Transport, option value is critical. Monte Carlo methods support flexible
planning, enabling phased infrastructure delivery, modular expansion, and adaptive policy responses -
ensuring projects remain financially viable and effective under changing demand conditions.

As noted by Transport for London in its review of Auckland’s Light Rail business case:

“While the core forecasting assumptions appear robust, given the experience with COVID and the rapid rate of
technological and environmental change, it would be prudent to understand the impacts of the scheme against
a broad range of plausible contextual futures” (TfL, 2024).



Monte Carlo techniques are ideally suited to support this kind of analysis, particularly when evaluating
flexibility, resilience, and option value in public transport investment.

2.3 Travel Demand Modelling: Structure, Inputs, and Computational Complexity

Travel demand modelling plays a critical role in transport policy and investment decision-making by generating
forecasts that inform business cases. These models provide a structured approach to predicting how people
will travel in the future, based on economic, demographic, and network conditions. Over decades of
international development, they have evolved into sophisticated tools with significant refinements and
improvements, in most cases making them the only available method for producing the forecasts necessary
for transport business cases.

The four-step model (FSM) remains the dominant framework for urban transport planning, including in
Auckland’s Macro Strategic Model (MSM):

1. Trip Generation — Predicts how many trips originate from and arrive at specific zones based on
population, employment, and land use.

2. Trip Distribution — Determines where trips go, estimating interactions between different zones.
Mode Choice — Allocates trips to available transport modes (e.g., car, public transit, walking, cycling).

4. Trip Assignment — Assigns trips to the transport network, reflecting congestion effects and route
choices.

Moreover, these models rely on key input variables, including:
¢ Demographic trends (population, employment, household structures).
e Transport network attributes (road capacity, transit availability, fares, road tolls).
e Policy levers (congestion pricing, parking regulations, work-from-home trends).

A good example of refinements to traditional 4 stage models is London's Model of Travel in London (MoTiON).
While it follows the conventional stages of trip generation, trip distribution, mode choice, and network
assignment, it enhances these steps by adopting a tour-based approach, focusing on home-based tours to
better represent actual travel behaviour (Transport for London, 2023).

While FSM models provide structured, interpretable outputs, their use in business cases is constrained not
just by computational demands but also by the time-intensive process of model execution. Large-scale models
like Auckland’s MSM require not only significant processing power but also careful coordination between the
business case and modelling teams. Developing a clear model specification, refining inputs, addressing
clarifications, running simulations, and validating outputs can take a week or more - particularly when testing
multiple scenarios and requiring non-standard outputs to meet business case needs. As a result, exhaustive
uncertainty analysis is often impractical, leading to simplified assumptions about future demand conditions.

Traditional demand models are therefore not only inherently deterministic but also limited by the time-intensive
process of defining, executing, and validating model runs, which constrains their ability to be used to directly
assess uncertainty.

24 Uncertainty in Travel Demand Modelling: Why Focus on Input Uncertainty?
Uncertainty in travel demand forecasting arises from multiple sources, broadly categorised as:

1. Structural Uncertainty — Limitations in model design and underlying assumptions (e.g.,
appropriateness of the four-step structure and comprehensiveness of the behavioural responses that
are included, such as trip-chaining and departure time choice).

2. Parameter Uncertainty — Variability in the estimated coefficients for the behavioural components of the
models (e.g., mode specific factors, value of time, elasticity of demand).

3. Forecast Input Uncertainty — Fluctuations in forecasts of key external inputs such as land use,
population growth, pricing policies, and network configurations.

The implications of structural and parameter uncertainties - that is, the first two sources noted above - are
generally best addressed during the model development phase, before the model is used for appraisal. While
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these sources of error can be reduced through better base year data and improved models, Willumsen and
Ortuzar (2015) note that they can never be eliminated and remain an inherent challenge.

In contrast, input uncertainty arises during model application in business case development and is the primary
focus of this paper. It is often a large driver of variability in demand forecasts, as key factors such as future
land use patterns, employment concentrations, work-from-home trends, and travel costs are inherently
uncertain yet central to shaping model outcomes. For instance, assumptions about work-from-home adoption
or road pricing policies can significantly alter travel behaviour, directly affecting the projected viability of
transport investments. A useful diagram illustrating these different sources of uncertainty is shown in Figure 1.

Partly due to the time involved in running travel demand models, Willumsen and Ortuzar (2015) conclude that
addressing uncertainties in future inputs requires approaches that extend beyond better models and
calibration data, such as stochastic risk analysis and scenario planning.
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Figure 1: Notional Sources of Uncertainty in Forecasting (Willumsen & Ortuzar, 2015)

3 Case Study: Application to a Transport Project Business Case
3.1 Approach

Establishing a Framework: Monte Carlo Simulation for Travel Demand Forecasting

While Monte Carlo analysis is well established in fields such as finance (e.g. Glasserman, 2004), it is less
commonly applied in travel demand forecasting. However, approaches to adapting Monte Carlo techniques to
the transport sector are emerging - most notably through the framework proposed by Willumsen (2014), who
outlines the following method for simulating transport demand:

o First, use a combination of evidence (e.g. ex-post assessments) and stakeholder engagement to
identify the input variables most likely to drive uncertainty, and define how model outputs relate to
them.

¢ Second, conduct model runs to examine how variation in these inputs affects forecast patronage.

¢ Third, determine appropriate probability distributions for those key inputs, drawing on evidence,
expert judgement, and stakeholder input.



¢ Finally, construct a model in which these variables influence patronage outcomes, and repeatedly
sample from their distributions using Monte Carlo simulation.

Selecting a Case Study for Demonstration

The Auckland Light Rail (ALR) programme provides a valuable case study for demonstrating how Monte Carlo
simulation techniques can be applied to quantify uncertainty in demand forecasting, while also illustrating the
benefits of aligning technical modelling with stakeholder-informed, evidence-based scenarios. Although the
Monte Carlo method was not fully implemented in the ALR business case itself, the extensive modelling
undertaken provides an ideal foundation for demonstration purposes.

For the most recent ALR business cases, 147 transport model scenarios were developed over two years using
the Macro Strategic Model (MSM), operated by the Auckland Forecasting Centre (AFC)2. MSM is a multimodal
demand model used to forecast travel demand for major projects in Auckland. The MSM model was
successfully peer reviewed for suitability by Transport for London (2023), and these model runs provide a rich
source of data for developing and testing Monte Carlo simulations of transport demand.

While passenger forecasts from MSM are used to demonstrate the method, the aim is not to evaluate the ALR
business case itself, but rather to advance forecasting techniques for quantifying uncertainty - techniques that
can be applied to future projects.

Applying the Monte Carlo Framework to the Case Study

To show how Monte Carlo techniques can improve understanding of risk and uncertainty in MSM-based
transport demand forecasts, the approach outlined by Willumsen (2014) has been adapted as follows:

1. Leverage MSM Scenarios for Regression Modelling: The first step uses the 147 MSM runs from
the ALR indicative and detailed business cases to estimate a regression model that predicts
passenger demand as a function of key input assumptions.

2. Characterise Input Variability: Monte Carlo simulation is then used to introduce variability into the
model inputs. This involves generating random draws from selected probability distributions,
calibrated to reflect real-world uncertainties.

3. Simulate Passenger Demand: Finally, the regression model is applied to the randomly sampled
inputs to generate a range of demand forecasts that represent different plausible future scenarios,
reflecting real-world uncertainty.

This adapted Monte Carlo method was applied to two illustrative scenarios. These demonstrate how the
technique can support infrastructure decision-making by quantifying uncertainty and highlighting risk. The first
scenario applies the approach to a baseline case aligned with the original business case assumptions. The
second introduces a dynamic scenario designed to explore the concept of option value - showing how Monte
Carlo simulation can inform staged investment or adaptive planning strategies.

The assumptions used in both scenarios were developed solely to illustrate how Monte Carlo techniques can
be applied during the development of a business case. They are not intended to review or critique the original
ALR business case, nor do they reflect the formal assumptions, inputs, or views of any sponsoring agency. In
a formal business case, assumptions would be developed in consultation with stakeholders and supported by
robust evidence - for example, by comparing historical population and employment projections with actual
outcomes. The two illustrative scenarios are outlined below.

Baseline Case: Business Case Assumptions

This scenario uses input assumptions that approximate those adopted in the original ALR business case. The
purpose is to demonstrate how Monte Carlo simulation can be used to quantify uncertainty around central
demand forecasts, even when based on a fixed set of policy and input assumptions.

Dynamic Scenario: Exploring Option Value

The second scenario constructs a time-varying pathway in which key input variables evolve over time -
reflecting a plausible future where growth and policy intervention are delayed before accelerating. Variables

2 Mandated by Auckland Council, Auckland Transport, and NZTA to develop and operate Auckland's regional travel demand and traffic
models, ensuring consistent decision support for major transport projects and policies.



such as employment, population growth, parking pricing, and the likelihood of congestion charging are
assumed to be lower than the business case assumptions in the early years and higher in later years. In
contrast, working-from-home uptake is assumed to be higher initially, tapering off over time. The aim is to
illustrate how Monte Carlo methods can highlight the option value of flexibility: helping decision-makers
understand the benefits of designs or investment strategies that can scale or adapt as uncertainty unfolds.

3.2 Developing the Regression Model

Selecting attributes

Most risk and uncertainty are likely to be associated with attributes that influence passenger demand and are
beyond the direct control of any future transport authority or operator. These variables are primarily driven by
market forces and/or pending government policy decisions. Consequently, the following variables were
selected for developing the Monte Carlo methodology:

e Congestion pricing, which depends on future national and local government decisions.

e City Centre parking prices, influenced by both market forces and national and local government
policies regarding the supply of parking.

¢ City Centre employment growth, largely determined by local, national, and international economic
market forces and planning regulations.

e Working from Home (WfH), dependent on industry and service sector employment policies,
particularly impacting passenger demand in the City Centre given its high proportion of office workers.
This factor was also identified as worth further exploration by the TfL review of the MSM model.

e Population growth along the corridor, influenced by market forces and central and local government
housing policies for significant areas of government-owned land along the corridor.

Other key drivers of demand, such as train frequency, capacity, and travel times, were not simulated using
Monte Carlo methods for this paper, although were included in the regression model to improve its predictive
power. For this case study, these factors were deemed more directly controlled by the transport operator or
authority managing the train service, and the associated risk and uncertainty are likely lower compared to the
exogenous variables.

Estimating the Model

During the development of this paper, multiple regression models were evaluated and eventually landing on a
log-log specification as being most suitable. Not only did the log-log model perform well, but it also allows for
some of the resulting parameter estimates to be interpreted as elasticities, which in turn allows them to be
compared to the wider transport economic literature. In our preferred log-log model, continuous variables were
log-transformed, whereas dummy variables and those expressed as percentages were left untransformed.®

The preferred specification for the regression model is as follows:

log D; = By + By log Pop; + B, log Emp; + B3 log IVT; + B, log Cap; + Pslog F; + BsWfH; + B;Df + BsDf

Where for each model run i:

¢ logD; denotes passengers per hour per direction (p/h/d) at the peak load point (PLP) in the AM peak
e log Pop; denotes population in the corridor (000s)

e log Emp; denotes employment in the city centre (000s)

¢ logIVT,; denotes in-vehicle travel-time between the city centre and the airport (mins)

e logCap; denotes passenger capacity at the peak load point (p/h/d, 000s)

¢ logF; denotes frequency (trains per hour)

e W(fH; denotes work from home uptake (7% or 14%)

3 Specifically, we applied log transformations applied to Peak load demand (dependent variable), Corridor population, City centre
employment, In-vehicle time, Capacity at peak load point, and Frequency. The following variables were not transformed, Congestion
pricing (dummy), Parking prices (dummy), and work-from-home rates (%).



Df denotes a dummy for congestion charging (0=No, 1=Yes)
D} denotes a dummy for parking prices (0=No, 1=Yes)
B denote parameters in the regression model to be estimated.

Regression results are shown in Table 1.

Table 1: Regression results

Parameter  Variable Interpretation / Measure Coefficient t-statistic
Bo - Intercept 3.806 8.2
B1 log Pop; Population in corridor (000s) 0.546 4.0
B> log Emp;  Employment in city centre (000s) 0.895 4.4
Bs log IVT; In-vehicle travel time (mins) -0.847 -16.0
Ba logCap;  Capacity at PLP (p/h/d, 000s) 0.135 9.3
Bs log F; Frequency (trains per hour) 0.157 3.8
Be WfH, WFH (7%, 14%) -0.029 -6.5
B Df Congestion charge (0=No, 1=Yes) 0.015 0.6
Bs Df Parking price increase (0=No; 1=Yes) 0.133 54

R? 0.92

Observations (MSM model runs) 147

For the log-transformed variables that can be interpreted as constant elasticities* it was found:

Corridor Population: The coefficient of 0.546 indicates a 10% increase in corridor population leads
approximately to a 5.5% increase in peak load demand.

City Centre Employment: The coefficient of 0.895 indicates a 10% increase in City Centre
employment results in an approximately 9% increase in peak load demand.

In-Vehicle Travel Time: The coefficient of -0.847 indicates a 10% increase in in-vehicle travel time
reduces peak load demand by approximately 8.5%.

Frequency. The coefficient of 0.157 indicates a 10% increase in frequent increased peak load
demand by approximately 15%.

The elasticity for in-vehicle time appears plausible when compared to external evidence. It is, for example,
slightly higher than the upper end of observed short-term elasticities and well within long-term elasticities

(Wallis,

(2004); Balcombe, et al., (2004)). Although the estimated elasticity for frequency appears slightly low

compared to external evidence, this may reflect the choice of peak load as our demand measure — given that
most evidence reports larger elasticities in off-peak periods. The relatively large t-values of the parameters for
continuous variables indicate they are statistically significant and estimated relatively precisely.

For non-transformed variables, the parameters can interpreted as follows:

Work from Home: The coefficient of -0.029 suggests that an increase in the proportion of people
working from home from 7% to 14% (from 0 to 1) reduces peak load demand by approximately 2.9%.

Increased Parking Prices: The coefficient of 0.133 suggests that doubling parking prices in the city
centre (from 0 to 1) increases peak load demand by approximately 13%.

4 The coefficient approximately denotes the percentage change in peak load demand for a 1% change in the
corresponding variable.



The estimated parameter for congestion pricing is small and imprecise, likely due to limited variation across
the 147 scenarios, where its implementation was assumed early in the process - an outcome that, while
counterintuitive, reflects the constraints of the Business Case approach and resulting forecasts available to
estimate regression models.

With an R? of 0.92, the model explains 92% of the variance in peak load demand, indicating a strong fit to
observed data. We also tested a regression model that included dummy variables for the year associated with
the transport model run, although these were not found to improve model performance.

3.3 Results: Baseline Case

Having defined the probability distributions and parameters® to broadly reflect business case assumptions, the
regression model was applied to randomly sampled inputs to produce a range of plausible demand forecasts.
The full set of input parameters and corresponding results are presented in Appendix A.

Recognising that effective Monte Carlo analysis depends on stakeholder engagement and a solid evidence
base in defining plausible futures, a Python-based interface (Python, 2025) was developed to support an
interactive and transparent process (Appendix B). Designed for use in collaborative workshops - both in
person and online - the platform allows stakeholders to adjust key parameters in real time, using evidence-
based inputs to inform those changes and receive immediate visual feedback. This approach fosters shared
understanding, builds trust in the process, and enables rapid, transparent refinement of scenarios based on
simulation outcomes.

Figure 2 shows the simulation's median, 10th, and 90th percentiles, together with the business case forecasts
and the probabilities they will be exceeded for each forecast year. This provides a range for decision-making
and emphasises the reliability of the model's assumptions.

Peak Load Demand Forecasts in Stochastic Risk Analysis

==+ Median of Monte Carlo simulation
—@- Business case forecast
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Figure 2: Baseline Case Monte Carlo Simulation

5 The probability distributions and input parameters used for the Baseline Case in this paper were selected solely to demonstrate the
application of Monte Carlo techniques. They do not represent the assumptions or inputs that would be used in a formal business case
process for ALR, nor should they be interpreted as reflecting the views or recommendations of any sponsoring agency.



The business case forecast growth in peak load demand from 6,200 p/h/d in 2031 to 12,600 p/h/d in 2065.
The Baseline Case Monte Carlo simulations suggests this forecast may be reasonably optimistic for the early
years and more conservative for the later years. A summary of the findings from the Baseline simulations is:

e 2031: The business case forecast is 6,200 p/h/d, which is slightly above the median of the Monte
Carlo simulations. This indicates a slightly optimistic forecast, with an almost 80% probability that
actual demand could be lower. The 90th percentile of the simulations suggests that in more
optimistic scenarios, peak load demand could reach approximately 6,350 p/h/d, while the 10th
percentile suggests a more conservative estimate of around 5,700 p/h/d.

e 2041: The forecast of 8,500 p/h/d is also slightly above the median, with about a 60% chance that
actual demand could be slightly lower. Optimistic simulations suggest a peak demand of up to
8,950 p/h/d (90th percentile), whereas more conservative simulations project a demand of around
7,850 p/h/d (10th percentile).

e 2051: The forecast of 10,100 p/h/d is below the median, indicating that it may be somewhat
conservative. There is roughly a 70% chance that actual demand could be higher. In optimistic
scenarios, demand could reach up to 11,250 p/h/d (90th percentile), while more cautious
simulations suggest a demand of around 9,250 p/h/d (10th percentile).

e 2065: The forecast of 12,600 p/h/d is above the median and is the most optimistic forecast. There is
around an 80% chance that actual demand could be higher than this forecast. However, it remains
within the expected range, with the 90th percentile indicating a possible peak demand of up to
13,900 p/h/d and the 10th percentile suggesting a more conservative estimate of around 12,200
p/h/d.

Summary:

Overall, the business case forecasts are generally close to the median projections across all years,
suggesting that the forecasts are reasonably robust. The most likely outcomes fall within the 10th to 90th
percentile range, which indicates a reasonable level of confidence in the passenger demand forecasts,
barring any unforeseen significant events like the recent global COVID epidemic.

3.4 Results: Dynamic Scenario - Exploring Option Value

To demonstrate how Monte Carlo techniques can be used to highlight option value, the regression model was
applied to a dynamic scenario in which key inputs evolve over time - starting below and rising above the
assumptions used in the business case. This structure reflects the uncertainty and asymmetry often present in
long-term infrastructure planning, where short-term conditions may suppress demand, but long-term trends
may exceed expectations.

The simulated demand forecasts, shown in Figure 3, illustrate how patronage could respond under these
changing conditions. As with the baseline case, the median, 10th, and 90th percentiles are presented
alongside the business case forecasts, providing a range of plausible outcomes and demonstrating the
importance of flexibility in investment decisions.

This scenario was designed for illustrative purposes only. Input assumptions for variables such as population
growth, employment, remote working, parking pricing, and the likelihood of congestion charging were
deliberately exaggerated to test the resilience of demand forecasts. In a formal business case process, such
assumptions would be developed through stakeholder engagement and grounded in evidence.
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Peak Load Demand Forecasts in Stochastic Risk Analysis
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Figure 3: Dynamic Scenario Monte Carlo Simulation

These results illustrate how probabilistic demand forecasts can uncover early signs of over- or under-
estimation, highlighting where flexibility in design or timing may be warranted. Table 2 presents these results
in RAG form to support clearer interpretation, followed by a summary focused on option value implications of
the results. The rationale for RAG colour allocations is detailed in Appendix D.

Table 2: Dynamic Scenario Results

Metric 2031 2041 2051 2065

Business Case demand forecast (p/h/d) 6,200 12,600
Probability Business Case demand forecast will be exceeded (%) 6% 98%
90th Percentile demand (p/h/d) 6,100 9,050 11,600 15,700
Median demand (p/h/d) 5,400 8,450 10,850 14,700
10th Percentile demand (p/h/d) 4,900 7,450 9,900 13,550

Demand Standard Deviation (p/h/d)

Demand Coefficient of Variation (%)
Demand Distribution Skewness 0.350 -0.454 -0.434 -0.338
Simulations to reach convergence 10,358 16,722 22,722 35,941
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2031: Overestimated Demand — Can Capacity Be Phased?

e The business case forecast (6,200 p/h/d) exceeds even the 90th percentile, with a 94% probability
of being of being lower - suggesting over-optimism in early demand projections.

o The median demand (5,400 p/h/d) is 13% lower, increasing the risk of underutilised capacity low
return on public investment.

e Positive skewness (0.35) indicates a greater concentration of lower demand outcomes, reinforcing
the risk that early demand has been overestimated.

Key Option Value Considerations:

Can capacity be phased or deferred to reduce upfront capital costs?

Could smaller initial station sizes, rolling stock, or service frequency optimise resource allocation?
Can early ridership incentives (fare reductions, targeted promotions) help improve capacity
utilisation?

2041: Balanced Projection — Stability for Investment

e The business case forecast (8,500 p/h/d) closely aligns with the median (8,450 p/h/d), with a 48%
chance of being exceeded, suggesting a well-balanced forecast.

o Moderate demand variability (CV of 7%) provides stable conditions for investment and expansion
planning.

2051: Under-forecasting Risks — Will Capacity Be Enough?

e The business case forecast (10,150 p/h/d) is 7% below the median (10,850 p/h/d), with an 85%
chance of being exceeded - raising concerns about capacity constraints.

¢ Increasing standard deviation (678 p/h/d) requires scalable operational strategies particularly for
planning fleet sizes as the standard deviation exceeds the capacity of a train.

o Negative skewness (-0.43) suggests a higher concentration of demand scenarios above the
business case forecast, strengthening the case for early capacity expansion planning to avoid
costly last-minute upgrades.

2065: Long-term Growth — Is Capacity Scalable?

e The business case forecast (12,600 p/h/d) is well below both the median (14,700 p/h/d) and 10th
percentile (13,550 p/h/d), with a 98% probability of being exceeded.

e The risk of severe capacity shortages suggests urgent need for scalable infrastructure planning.
Key Option Value Questions:

e s the infrastructure scalable? Can it handle 20% more demand than forecasted without costly,
disruptive, last-minute expansions?

¢ Are we planning the right scheme? Would a more flexible design better accommodate long-term
growth trends?

4 Discussion and Further Research

41 Moving Beyond Point Forecasts: Practicality and Probabilistic Insight

Monte Carlo methods offer a compelling alternative to traditional forecasting approaches, not only in terms of
speed and practicality but also in the nature of the insights they provide. The dynamic scenario described in
this paper took just over five minutes to run - covering 86,000 simulations. While a collaborative stakeholder
process would naturally require more time, the computational demands of the simulation itself are negligible.

By contrast, running 86,000 full model simulations using MSM would be infeasible, highlighting a key reason
why traditional transport modelling typically relies on single-point forecasts. These fixed outputs provide

12



limited insight into risk and uncertainty, especially in projects with long planning horizons and high exposure to
future variability.

Monte Carlo simulation introduces a probabilistic framework, allowing demand forecasts to be expressed as
ranges - through distributions and percentiles - rather than as singular values. This approach not only better
reflects the realities of infrastructure planning, but also delivers these insights with remarkable efficiency,
generating tens of thousands of simulations almost instantaneously. The ability to rapidly produce probabilistic
outcomes enables decision-makers to assess risk, develop adaptable strategies, and engage in evidence-
based collaboration with confidence.

4.2 Barriers to Widespread Adoption and the Path Forward

The case study effectively demonstrates the value of Monte Carlo approaches, but two key limitations must be
addressed to make them more practical for real-world application:

o Extensive model run requirements — The regression equations were derived from 147 transport
model runs conducted over two years, an effort and timeframe that is unrealistic for most major
projects.

e Multicollinearity from business case assumptions — Model runs were structured to support
business case requirements, resulting in limited variation in key policy variables such as congestion
pricing, which was assumed early in the process. This lack of variation reduced statistical significance
(e.g., a low t-statistic of 0.6 for congestion pricing) and introduced multicollinearity, weakening
regression stability.

While the case study highlights Monte Carlo’s potential, its practical viability hinges on addressing these
challenges. Without solutions to streamline model runs and mitigate multicollinearity, Monte Carlo remains
more of a theoretical exercise - few projects can afford to wait two years and generate 150 transport model
runs for a regression that fails to effectively isolate all key policy impacts.

To evaluate the extent of multicollinearity, a correlation analysis was conducted (Appendix E), with results
illustrated in Figure 4.
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Figure 4: Correlation Plot of Regression Model Attributes

Evidence of multicollinearity is shown by the strong correlations between variables in Figure 4:

o Blue shades indicate positive correlations, while umber shades represent negative relationships.

¢ Significant correlations (p < 0.01) are marked with a cross.

e High correlation values (close to +1) suggest strong relationships, while values near 0 indicate weak
or no association.

Multicollinearity arises because business case-driven model runs were structured to meet policy needs rather
than to optimise regression estimation. For example, the 0.52 correlation between parking pricing and
congestion charges does not imply causality but reflects how the scenarios were designed. This structure has
inflated standard errors and reduced the statistical reliability of key coefficients, making it difficult to isolate
individual policy impacts.

A fractional factorial design offers a structured and statistically rigorous way to generate new transport
model scenarios. By systematically varying key inputs, this approach reduces multicollinearity while
dramatically cutting the number of required model runs.

For example, instead of relying on 147 business case scenarios, a fractional factorial design could achieve
similar statistical robustness with just 36 strategically selected runs. This ensures each policy and design
variable is independently varied, producing more reliable regression outputs.

The benefits include:

o Fewer model runs — reducing time and computational demands
¢ Improved coefficient reliability — lower standard errors and stronger t-statistics
e Clearer insights — better isolation of individual policy impacts
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Greater flexibility — enabling future Monte Carlo applications to incorporate additional variables (e.g.
fares) without excessive rework

An example of this approach is shown in Appendix F.

4.3

A More Efficient and Statistically Robust Approach — Bayesian methods

An important enhancement to the fixed-effects (frequentist) regression approach used in this paper is to treat
estimated coefficients as random variables, each with its own distribution. Bayesian methods (Gelman, et al.,
2013) provide a natural framework for capturing this parameter uncertainty, allowing it to be integrated directly
into Monte Carlo simulations.

The case study demonstrates how input assumptions affect demand forecasts. A Bayesian approach could
further improve model robustness by explicitly accounting for uncertainty in key parameter estimates -reducing
the risk of overconfidence in business case forecasts (Gelman, et al., 2013). This represents a valuable
direction for future research and real-world application.

A summary of the differences, strengths, and limitations of fixed-effects and Bayesian methods is provided in
Appendix G.

4.4

Alternative Approach for Future Transport Modelling Practice

The following is proposed as a practical enhancement to current modelling practice - integrating Monte Carlo
techniques into the existing workflow for developing demand forecasts in transport business cases. Rather
than replacing conventional methods, this approach builds on them to improve risk assessment and support
more robust, evidence-based decision-making.

Undertake Business Case development and associated transport and land use modelling.
Complete peer review of the models to ensure they meet best practice standards.

Identify key stochastic drivers of passenger demand, alongside stakeholders, reviewers, and
subject matter experts and drawing on empirical evidence, agree on the most relevant input variables
for decision-making.

Develop an orthogonal statistical design for these variables and run transport models accordingly.
Estimate a regression model from the transport model outputs.

Agree on appropriate probability distributions to represent the future variability of key input
parameters based on expert insight and empirical evidence.

Run Monte Carlo simulations to assess the probabilistic contribution of each attribute.
Estimate travel demand by applying Monte Carlo-generated values to the regression model.
Repeat simulations until results converge to a stable output.

Review results and conduct sensitivity tests develop and simulate "plausible futures," as
suggested by Transport for London.

This is shown in Figure 5.
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Figure 5: Alternative Approach for Future Transport Modelling Practice
5 Conclusion: Strengthening Transport Decision-Making with Monte Carlo Analysis

Business cases for major transport projects and policies will usually rely on transport model forecasts. While
these models have been continuously refined through decades of research and real-world application, they
usually generate deterministic (“point”) estimates that do not reflect uncertainty in future conditions.

Despite advances in computing power, the practical use of transport models remains constrained by the time-
intensive process required to define, execute, and validate model runs. Large-scale models like Auckland’s
MSM require careful coordination between business case and modelling teams, with each iteration often
taking a week or more depending on the specific outputs required. As a result, uncertainty is frequently
oversimplified, limiting the robustness of demand forecasts and the confidence in investment decisions.

Rather than replacing existing forecasting methods, a complementary approach is proposed for Monte Carlo
simulation that enriches the understanding of uncertainty and variability. By generating a probabilistic view of
future scenarios, it equips decision-makers with powerful insights to manage risks, identify growth
opportunities, and develop more resilient investment strategies.

This paper demonstrates the practical application of Monte Carlo analysis through a recent major transport
case study. While the case study underscores the value of Monte Carlo techniques, it also highlights key
limitations - specifically, the need to streamline model runs and address multicollinearity. Without addressing
these challenges, Monte Carlo risks remaining a theoretical exercise, as few projects can justify the time and
effort required to generate extensive model runs that fail to effectively isolate all key policy impacts. By
adopting orthogonal statistical designs, the number of required model runs can be significantly reduced while
improving the statistical robustness of regression estimates.

To ensure more robust and resilient transport decision-making, Monte Carlo approaches should be a required
component of all major transport investment and policy business cases. These techniques provide a critical
framework for systematically accounting for uncertainty, improving risk assessment, and enhancing the
credibility of demand forecasts. To fully integrate Monte Carlo into transport business cases and policy
development, a structured process should be adopted, with the approach outlined in Section 4.4 serving as a
strong starting point - ensuring that uncertainty is not treated as an afterthought but as a fundamental
consideration. This will enable investment and policy decisions to be more resilient to future variability, reduce
the risk of costly over - or under-investment, and ensure infrastructure planning remains both adaptable and
evidence based.
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Appendix A Baseline Case: Input Assumptions and Results

The input assumptions and results for the Baseline Case are presented below. As noted earlier, these
probability distributions and parameters were developed solely to illustrate the application of Monte Carlo
techniques. They are not intended to reflect the assumptions of a formal business case for ALR, nor do they
represent the views or recommendations of any sponsoring agency.

Metric 2031 2041 2051 2065
Congestion pricing distribution Bernoulli Bernoulli Bernoulli Bernoulli
Congestion price parameter 0.95 0.95 0.95 0.95
Parking price distribution Bernoulli Bernoulli Bernoulli Bernoulli
Parking price parameter 0.95 0.95 0.95 0.95
W distributon PERT | PERT | PERT | PERT
pert-alpha parameter 4.0 4.0 4.0 4.0
most likely parameter (%) 11.5 11.5 11.5 11.5
minimum parameter (%) 7 7 7 7
maximum parameter (%) 14 14 14 14
Corridor population distribution IE;EJI%’ IE;EJI%’ IE;EJI%’ IE;EJI%’
pert-alpha parameter 4.0 4.0 4.0 4.0
most likely parameter (000s) 170 198 234 289
minimum parameter (000s) 168 186 204 233
maximum parameter (000s) 173 235 289 301
City Centre employment distribution IE;EJI%’ IE;EJI%’ IE;EJI%’ IE;EJI%’
pert-alpha parameter 4.0 4.0 4.0 4.0
most likely parameter (000s) 126 149 161 175
minimum parameter (000s) 125 144 157 167
maximum parameter (000s) 126 154 177 182
Business Case demand forecast 6,200 8,500 10,150 12,600
Probability Business Case demand forecast will be exceeded 22% 39% 69% 75%
90th Percentile demand 6,350 8,950 11,250 13,900
Median demand 6,000 8,350 10,450 13,050
10th Percentile demand 5,700 7,850 9,650 12,200
40th Percentile demand 5,950 8,250 10,300 12,900
30th Percentile demand 5,900 8,150 10,100 12,700
Demand Standard Deviation 285 452 650 701
Demand Coefficient of Variation 4.7% 5.4% 6.2% 5.4%
Demand Distribution Skewness -0.647 -0.275 -0.085 -0.398
Simulations to reach convergence 4,009 10,087 20,844 24,255
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Appendix B Transparent Platform for Evidence-Based, Stakeholder-Driven Monte

Carlo Analysis

Recognising that the effectiveness of Monte Carlo analysis depends on meaningful stakeholder engagement
in defining plausible, evidence-based futures, a Python-based interface (Python, 2025) was developed to
support an interactive and transparent process. Designed for use in collaborative workshops - either in person

or online - the platform allows stakeholders to adjust key parameters in real time, ensuring that changes are

both transparent and evidence-informed, with immediate visual feedback. This fosters shared understanding,

strengthens transparency, and enables rapid scenario refinement in response to simulation results.
The figures below illustrate key features of the platform:

¢ Input interfaces for 2031 and 2041: Users can set convergence targets based on evidence, select

probability distributions, and adjust key parameters using dropdown menus. The interface also
displays the number of simulations required for convergence, alongside original business case
assumptions, to support alignment on critical inputs.

¢ Graphical outputs: Example visualisations generated once simulations are complete, offering a clear
summary of results for interpretation and discussion.

Rather than a one-size-fits-all solution, the platform is designed to be flexible and adaptable to the specific
needs of each project. By making assumptions transparent and grounded in evidence, and by fostering

collaboration and ownership among sponsors and project teams, it ensures Monte Carlo analysis becomes an
integrated, practical decision-support tool rather than a theoretical exercise.

Monte Carlo Simulation Inputs for 2031

Convergence target (std. error of the mean - default 10):
Congestion charge probability (default 50%):

Parking price probability (default 50%):

Work from Home distribution:

Mean (default = 9.0): 13.5

Standard Deviation (default = 1.4): 3

Corridor population distribution:

Uniform distribution selected - no additional inputs required.
City Centre employment distribution:

Alpha (default = 3): 3

Beta (default = 3): 3

Run 2031 Simulation

19433 simulations to reach target SEM

Business Case Assumptions
Corridor Population (000s):
Do Minimum
Most Likely
Maximum
City Centre Employment (000s):
Do Minimum
Most Likely
Maximum
In-vehicle travel time (mins):
Capacity (pax/hr/dir, 000s):
Frequency (trains per hour):

Work from Home (Census: 2013=7%, 2018=9%, 2023=18%):

0.30
0.65

Normal -

Uniform -

168
173

125

126

126

29

159

15

7% - 18%

Monte Carlo Simulation Inputs for 2041

Convergence target (std. error of the mean - default 10):
Congestion charge probability (default 50%):

Parking price probability (default 50%):

Work from Home distribution:

Work from Home most likely (default = 9.0): 9.0

Beta-PERT Alpha (default = 4): 6
Corridor population distribution:

Population most likely (default = 198.5): 210
City Centre employment distribution:

Employment mean (default = 148.8): 157

Standard deviation (default = 14.9): 7

Run 2041 Simulation

71683 simulations to reach target SEM

Business Case Assumptions
Corridor Population (000s):
Do Minimum
Most Likely
Maximum
City Centre Employment (000s):
Do Minimum
Most Likely
Maximum
In-vehicle travel time (mins):
Capacity (pax/hr/dir, 000s):
Frequency (trains per hour):
Work from Home (Census: 2013=7%, 2018=9%, 2023=18%):

25

0.83

0.92

Beta-PERT v

Triangular -

Normal

186
198
235

144
149

29

211

20
7%-18%
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Appendix C Dynamic Scenario - Exploring Option Value: Input Assumptions and

Results

The input assumptions and results for the Dynamic Scenario are presented below. As previously noted, this

scenario is illustrative in nature. Assumptions for key variables - such as population growth, employment,
remote working, parking pricing, and the likelihood of congestion charging - were intentionally exaggerated to
test the resilience of demand forecasts. In a formal business case context, these assumptions would be
developed in consultation with stakeholders and supported by robust evidence.

Metric 2031 2041 2051 2065

Congestion pricing distribution Bernoulli Bernoulli Bernoulli Bernoulli

Congestion price parameter 0.3 0.6 0.85 0.92
Parking price distribution Bernoulli Bernoulli Bernoulli Bernoulli

Parking price parameter 0.4 0.75 0.9 0.96
WiH distribution pemr | PeRr | peRT | pemr

pert-alpha parameter 6 6 6 6

most likely parameter (%) 13.1 11.2 10.5 8.5

minimum parameter (%) 7 7 7 7

maximum parameter (%) 14 14 14 14
Corridor population distribution Uniform IE;EJI%’ IE;EJI%’ IE;EJI%’

pert-alpha parameter 6 6 6

most likely parameter (000s) 210 240 293

minimum parameter (000s) 168 186 204 233

maximum parameter (000s) 173 235 289 301
City Centre employment distribution Normal IE;EJI%’ IE;EJI%’ Normal

pert-alpha parameter 6 6

most likely parameter (000s) 150 165

minimum parameter (000s) 144 157

maximum parameter (000s) 154 177

mean parameter (000s) 129 184

standard deviation parameter 6 8
Business Case demand forecast 6,200 8,500 10,150 12,600
Probability Business Case demand forecast will be exceeded 6% 48% 85% 98%
90th Percentile demand 6,100 9,050 11,600 15,700
Median demand 5,400 8,450 10,850 14,700
10th Percentile demand 4,900 7,450 9,900 13,550
40th Percentile demand 5,250 8,300 10,650 14,450
30th Percentile demand 5,150 8,150 10,500 14,250
Demand Standard Deviation 458 582 678 853
Demand Coefficient of Variation 8.4% 7.0% 6.3% 5.8%
Demand Distribution Skewness 0.350 -0.454 -0.434 -0.338
Simulations to reach convergence 10,358 16,722 22,722 35,941
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Appendix D Metrics for Evaluating Demand Scenarios

Metric Interpretation Thresholds and Rationale
Represents expected demand for
planning and investment decisions.
S _
Business OV percentile to 98%, or, 102% to 90th
whether the project is well-scoped, : : .
Case Demand under-sconed. or over-scoped. and percentile. Some risk of being too
o pea, pea, optimistic/conservative. [l BIOINElo [CRIgERTE
guiding decision-makers and investors m
in assessing risks and potential
rewards.
Probability BC | Snows how often the forecast Yellow: >10%-<40% or 60%-90%.
. surpasses the business case, : L : -
Demand will indicating balance between under- and Slightly optimistic or conservative. |Gk
be Exceeded goa <10% or >90%. High risk of significant
over-estimation.
90th Represents a high-demand scenario,
Percentile useful for assessing upside potential
Demand and testing whether the business case
(p/h/d) is conservative.

. Represents the central tendency of .
pedian demand forecasts, showing whether | Benchmarks for evaluating
(plhid) the business case is realistic, Business Case forecasts

optimistic, or under-scoped.
B . Represents worst-case demand,
Percentile o . :
critical for debt investors assessing
DLIEL: repayment risk
(p/hid) pay :
Measures the absolute dispersion of
demand forecasts around the mean.
higher SD suggests greater variability
gfamnzra]?d Tn?:g?:]iz?’ indicating higher Yellow: 450-550 passengers. Monitor for
Deviation y _ potential capacity strain. [{-Ie Be2st510)
lower SD implies more stable demand | T O i e R e L e
projections, supporting more confident
capacity planning and investment
decisions.
Demand Yellow: 5%-
. . Quantifies relative variability, indicating | 7.5%. Moderate variability. [XEls HErsy 2 Ke]1
Coefficient of . ) . o : = = ;
o confidence in predictability. predictability, requiring further analysis o
Variation : X
contingencies.
Highlights distribution asymmetry, 0.2 to 0.46 Mild right skewed distribution
Demand showing risks of underperformance forecast demand may be slightly optimistic
Skewness (right skew) or overperformance (left | g5 t5.0.46 Mild left skewed distribution,
skew). forecast demand may be slightly pessimistic.
Red: Outside these bounds. Highly skewed
distribution, potential over- or under-|

23



Appendix E Correlation Analysis of Case Study Variables

To interpret the correlation (Cor.) and p-values (p) in the table, both the strength and direction of the
correlation, as well as the significance level indicated by the p-value need to be considered:

Strength of Correlations:

Weak correlation (Cor. < 0.3): Most pairs fall into this category, indicating weak relationships.

Row
Corridor population
Parking price
Congestion charge
Capacity
Congestion charge
WfH
Parking price
In-Vehicle time
In-Vehicle time
WfH
Congestion charge
Corridor population
City Centre employment
Corridor population
City Centre employment
City Centre employment
Congestion charge
City Centre employment
Congestion charge
WfH
City Centre employment
Parking price
Corridor population
Corridor population
Parking price
Corridor population
City Centre employment

Corridor population

Strong correlation (cor. > 0.7): Example: Corridor population and City Centre employment.

Moderate correlation (0.3 < Cor. < 0.7): Several pairs, such as Congestion charge and Work from Home

Column
City Centre employment
WfH
WfH
Frequency
Parking price
Capacity
Capacity
Frequency
Capacity
In-Vehicle time
Capacity
Frequency
Frequency
Capacity
WfH
Capacity
In-Vehicle time
Parking price
Frequency
Frequency
Congestion charge
In-Vehicle time
In-Vehicle time
Parking price
Frequency
WfH
In-Vehicle time

Congestion charge

and Parking price increase and Peak load capacity.

Positive vs. Negative Correlations:

Cor.

0.93
0.65
0.61
0.57
0.52
0.43
0.40
-0.32
-0.31
-0.29
0.22
0.20
0.17
0.17
-0.12
0.11
-0.11
-0.08
0.08
0.08
-0.07
-0.07
-0.06
-0.05
0.05
-0.04
0.03
-0.02

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0002
0.0005
0.0065
0.0160
0.0410
0.0370
0.1300
0.1800
0.1900
0.3400
0.3200
0.3600
0.4200
0.4300
0.4500
0.5700
0.5500
0.6300
0.7000
0.8300

Positive correlations (Cor. > 0) indicate that as one variable increases, so does the other. The strongest is

between Corridor population and City Centre employment (0.93).
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¢ Negative correlations (cor < 0) suggest an inverse relationship. For example, In-vehicle time and
Frequency has a weak to moderate negative correlation (-0.32).

Significant Correlations (p < 0.05):

e Pairs where the p-value is less than 0.05, suggesting a statistically significant relationship. Examples
include:

o Corridor population & City Centre employment (very strong positive correlation, 0.93).
o Parking price increase & Work from Home (strong positive correlation, 0.65).
o Congestion charge & Work from Home (moderate to strong positive correlation, 0.61).

o Peak load capacity & Frequency (moderate positive correlation, 0.57).

Non-Significant Correlations (p 2 0.05):

e These pairs have p-values greater than 0.05, indicating no statistically significant relationship, even if the
correlation value appears large or small. For instance:

o Congestion charge and In-vehicle time (weak negative correlation, -0.08).

o City Centre employment and In-vehicle time (virtually no correlation, -0.02).
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Appendix F Orthogonal Fractional Factorial Design Example

In Stated Preference (SP) techniques, orthogonal designs are used to structure surveys in a way that
effectively isolates and identifies the main effects of interest, minimising the risk of confounding between
variables (Pearmain, Swanson, Kroes, & Bradley, 1991; Hensher, 1993). A fractional factorial design offers
similar benefits when designing transport model runs to support regression-based Monte Carlo analysis -
reducing multicollinearity, enhancing statistical reliability, and significantly lowering the number of required
simulations. For example, rather than relying on 147 business case—driven model runs, a well-structured
fractional factorial experiment could reduce this to just 36 strategically selected runs while maintaining
statistical rigour. By systematically varying key policy and design variables, this approach yields more robust
and interpretable regression estimates.

The Table below outlines the number of model runs required for different orthogonal experimental designs
based on 2 variables at 3 levels each and 6 variables at 2 levels each, demonstrating how a carefully
structured approach can significantly improve efficiency without compromising analytical robustness.

Full vs. Fractional Factorial Design Examples

Design Type Total Model Runs Required
Full Factorial (All Scenarios Tested) 576 runs
Fractional Factorial (Strategic Subset of Runs) 96 runs
Orthogonal Fractional Factorial (Optimised for Regression Estimation) 36 runs

To illustrate this, a hypothetical fractional factorial experiment was developed (Groemping & Morgan-Wall,
2025) using:

e 2 variables at 3 levels (Corridor Population, City Centre Employment).

e 6 variables at 2 levels (Congestion Pricing, Parking Pricing, Work-from-Home, Travel Time, Fares,
Frequency).

This experimental design structures the model runs to maximise statistical efficiency, ensuring that key
variables of interest can be independently assessed while keeping the number of required simulations
manageable. The design is shown below:

Experiment | Corridor | City Centre | Congestion C!ncrease C'.ty Work from| Travel Train
. entre parking . Fares
# population | employment charge price Home time Frequency
1 2 2 2 1 2 2 1 2
2 3 2 1 1 2 2 2 1
3 3 1 2 2 2 1 2 2
4 2 2 2 1 1 1 2 2
5 1 3 1 2 2 1 2 1
6 1 1 1 2 2 2 1 2
7 3 3 1 2 1 1 1 2
8 2 2 1 1 1 2 2 2
9 2 1 1 1 2 2 2 1
10 1 1 1 1 2 2 2 1
11 3 2 1 2 2 2 1 2
12 2 1 1 2 2 2 1 2
13 1 3 2 2 1 2 2 1
14 3 2 2 2 1 2 2 1
15 3 3 2 1 2 1 1 1
16 1 2 2 2 2 1 2 2
17 1 2 2 2 1 2 1 1
18 2 3 2 2 1 2 2 1
19 2 1 2 2 2 1 2 2
20 1 1 1 1 1 1 1 1
21 3 1 1 1 1 1 1 1
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Experiment | Corridor | City Centre | Congestion Increase C'.ty Work from| Travel Train
. Centre parking . Fares
# population | employment charge price Home time Frequency
22 3 1 2 1 1 1 2 2
23 3 3 2 1 2 2 1 2
24 2 3 2 1 2 1 1 1
25 1 2 2 1 2 1 1 1
26 3 2 1 2 2 1 2 1
27 2 2 1 1 1 1 1 1
28 2 3 1 2 2 1 2 1
29 1 3 2 1 2 2 1 2
30 1 3 1 1 1 2 2 2
31 3 3 1 1 1 2 2 2
32 1 2 1 2 1 1 1 2
33 1 1 2 1 1 1 2 2
34 2 3 1 2 1 1 1 2
35 2 1 2 2 1 2 1 1
36 3 1 2 2 1 2 1 1
(Groemping & Morgan-Wall, 2025)
The correlation analysis of this design is shown in the Figure below.
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This clearly shows all off-diagonal correlations are +0, ensuring no multicollinearity between explanatory
variables.

A regression equation derived from 36 well-structured MSM transport model runs would yield more stable,
accurate coefficients, significantly reducing multicollinearity while maintaining key policy insights. Moreover,
instead of requiring 147 model runs spread over two years, these targeted runs could be batched and
completed within 2—3 weeks or less, as they would not need the full suite of business case outputs (e.g., plots,
select link analysis etc.). By focusing solely on the variables required for Monte Carlo simulations, this
streamlined approach would improve both efficiency and statistical reliability, making uncertainty analysis
more practical for real-world projects.
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Appendix G Fixed vs Bayesian Models: Key Differences and Trade-offs

A summary of the differences, strengths and weaknesses of fixed and Bayesian approaches is shown below:

Feature Fixed Model (Static Bayesian Model (Drawn Coefficients)
Coefficients)
. Often called “classical,” “frequentist,” or  Bayesian regression using posterior distributions.
Terminology| .... " X
fixed-effects” regression.
Model Coefficients Uses a single best-fitting coefficientfor ~ Estimates a probability distribution (posterior) for

Treatment of Coefficient
Uncertainty

Monte Carlo Implications

Simulation Spread

Interpretability

Forecast Tendencies

Ovefrfitting

Multicollinearity Handling

each variable (point estimate).

Ignores parameter uncertainty after
estimation - coefficients are assumed
fixed.

All simulations use the same coefficients
= only input uncertainty is captured.

Reflects only input variability; may
understate total forecast uncertainty.

Easier to explain, replicate, and
implement. Well-suited to proof-of-
concept models.

Tends to produce more stable and often
higher forecasts due to fixed coefficients.

Greater risk in small datasets - prone to
overfitting noise by locking in point
estimates.

Sensitive to multicollinearity - can result
in inflated or unstable coefficients.

each coefficient.

Explicitly models parameter uncertainty via priors
and posteriors — each simulation draws new
values.

Simulations use varying coefficients > captures
both input and model (parameter) uncertainty.

Reflects both input and model uncertainty,
typically producing more realistic bounds.

Richer and more nuanced output; ideal for risk
analysis, decision-making under uncertainty, and
scenario testing.

Can produce more cautious estimates, especially
when priors or weak data temper coefficient
effects.

Resists overfitting by combining prior beliefs with
observed data, shrinking implausible effects.
Robust even with smaller samples.

Mitigates multicollinearity through regularisation
(e.g. shrinkage via priors), improving stability.

(Gelman, et al., 2013; Train, 2009; Rossi, Allenby, & McCulloch, 2005)
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